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Introduction
Impinging jet flow by arrays of nozzles is a useful method to promote heat
removal from gas turbines, to flatten temperature steel slabs and dry paper and
films. According to Martin (1977), there are two patterns in impinging flows.
The first is a pattern in which a nozzle extrudes into space or a free jet impinges
on a plate, such as Gardon and Akfirat (1966) employed. The second pattern is
that of impinging flow into parallel disks. As mentioned above, many
experimental studies have been carried out during the past three decades. On
the other hand, several numerical studies regarding an impinging round jet flow
have been carried out; Amano (1983) and Kunugi and Kawamura (1988) used a
two-equation model of turbulence. These numerical results predicted the first
peak of the local heat transfer near the stagnation point and were in very good
agreement with the experimental data. Recently, Kunugi et al. (1993) and Craft
et al. (1993), who used various Reynolds stress models of turbulence, predicted
a “secondary peak” of the local heat transfer on the jet impingement plate.
According to the experimental consideration by Gardon and Akfirat (1966), the
reasons for the peak generation are seen that the first peak in the range of 0 <
R/D < 0.5 is caused by the flow acceleration and the secondary one in the range
of R/D > 0.5 is caused by the flow transition from laminar to turbulent.
Moreover, flow visualization photographs obtained by Yokobori et al. (1979)
showed the toroidal vortices being convected on the impingement plane. From
these experimental evidences, the mechanism of the flow transition near the
first and secondary peak points can be explained by a first transition from
turbulent to laminar at the first peak point and then the second transition from
laminar to turbulent at the second peak point. In this sense, it is seen that the
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flow-transition behavior can be affected by some vortex motion coming from
the nozzle edge. However, no numerical study regarding both transition
mechanisms has been reported. Therefore, a direct numerical simulation (DNS)
will be very helpful to understand the entire flow feature of the impinging round
jet.

The objectives of this study are to elucidate the flow mechanism by which
eddies are generated at the edge of the nozzle and transported into the
impingement region, and to understand the relationship between turbulence
generation and vortex structures in the transition region.

Numerical procedure
The DNS code with cylindrical coordinates can numerically solve the
momentum and continuity equations. A second-order finite volume
discretization scheme is applied to the spatial derivatives on a staggered mesh
system. In order to avoid a singularity at the center axis of the pipe center, the
incompressible Navier-Stokes equation can be rewritten with a radial flux
formulation, qr = r × ur, qz = uz, qθ = uθ. In terms of qr, the radial momentum
equation in conservative form becomes

(1)

The above equation can be discretized as the same manner as Verzicco and
Orlandi (1996). Control-volume location in the central region on the staggered
grid system is defined as shown in Figure 1.

For example, the discretization form of the convective term for the radial
component in equation (1) by using qr ,2, qr ,1, qr ,0 (in Figure 1) becomes

Figure 1.
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(2)

where the  qr ,0, qr ,1 and qr ,2 are evaluated at grid points r0, r1 and r2
respectively.

qr is evaluated at the grid point r = 0, and there is zero. Thus the above
equation is rewritten as

(3)

The discretization form of the viscous term for the radial component in the
equation also may be expressed as

(4)

giving the form below owing to substituting qr ,0 = 0, in the above equation:

(5)

Thus, qr at the center will never be used from the above expression (see
equations (3) and (5).

The incompressible Navier-Stokes and continuity equations described in
cylindrical coordinate are integrated in time using the fractional-step method
by Dukowicz and Dvinsky (1992). The temporal discretization of the Navier-
Stokes and continuity equations can be expressed as vector equations:

(6)

(7)

where L(q) is the linear term, N(q) is the non-linear term, ∇ is the divergence
operator, q is the velocity vector and ∇ p is the pressure gradient term. A
modified third-order Runge-Kutta scheme (Spalart et al., 1991) is applied to the
terms treated explicitly and the second-order Crank-Nicholson scheme is used
for other terms implicitly. By using the intermediate velocity field qk, equations
(4) and (5) can be written in the following system of equations:

(8)
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(9)

Superscript k (k =1,2,3) represents the Runge-Kutta sub-steps such that qk = qn

for k =1 and qk = qn+1 for k =3. Superscript n represents the full time-step. The
coefficients, βk, γk, ζk, are selected such that the total time advancement is third
order accurate for the explicitly treated terms and second order accurate for
implicitly treated terms (Spalart et al., 1991). These coefficients are:

The intermediate velocity field qk must be globally divergence-free. The
continuity equation is then corrected on each cell by the pressure increment δpk

= pk–pk–1:

(10)

Then, we have to solve the following Poisson equation: 

(11)

This expression is the so-called “delta-form”. The above Poisson equation
forδp̂k can be solved by means of a combination of a Fourier transform method
and ILUCGS method (Sonneveld, 1989). Since a uniform computational grid and
a periodic boundary condition are used in the circumferential direction, the
Fourier transform can be applied to the reduction of the three-dimensional
Poisson equation (11) to a set of uncoupled two-dimensional equations:

(12)

where m is the wave number, Mθ is the number of cell and r∆θ is the grid
spacing in the circumferencial direction. Equation (12) represents a banded,
penta-diagonal matrix. In the calculation for this matrix, the ILUCGS method
(Sonneveld, 1989) was employed for every wave number. This algorithm allows
the use of a fast Fourier transform and thus substantially reduces the solution
time. A message-passing system with eight nodes on a Fujitsu VPP500 vector-
parallel supercomputer was used in this computation. Efficiency of
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computation can be further enhanced by implementing the Fourier-ILUCGS
method in parallel by computing a group of Fourier modes on a different
processor.

Computational condition
Computational condition for fully developed turbulent pipe flow
In the first test case, we consider fully developed turbulent pipe flow and
compare with previous DNS results (Akselvoll and Moin, 1995; Eggels, 1994)
obtained for the same flow condition. The Reynolds number was 180 based on
pipe radius and friction velocity. The objective of this simulations is to validate
the numerical method developed for the impinging round jet. The
computational domain of the fully developed turbulent pipe flow is exactly the
same size as Eggels’s DNS (Eggels, 1994) shown in Figure 2. The number of
grid points is in the z-, r- and θ-directions respectively.

Computational condition for the turbulent impinging round jet
A computational domain of the turbulent impinging round jet confined with the
parallel walls is exactly the same size as Nishino’s experiment (Nishino et al.,
1996) shown in Figure 3. The experimental data provides a base for comparison
with the computational results. The Reynolds number, which is based on the

Figure 3.
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nozzle exit velocity U0 and the nozzle diameter (D), is assumed to be 10,000.
Uniform mesh spacing is applied in the circumferential direction (θ). In the z-
direction (z) and radial direction (r), non-uniform meshes specified by a
hyperbolic tangent function are employed. The number of grid points is 192 ×
220 × 192 in the z-, r- and θ-directions respectively. The inlet boundary condition
is connected with an “inflow generator,” that is, the inlet turbulent pipe flow is
considered. The number of computational grids for the “inflow generator” is 16
× 41 × 192 points in the z-direction, radial and circumferential directions
respectively. A convective boundary condition (Lowery et al., 1987) is imposed
at the exit of the computational domain. Note that the mass balance between the
inflow and outflow must be maintained at every time step. The initial velocity
field was generated from uniform velocity with random noise. The governing
equations were integrated forward in time until the numerical solutions reached
a statistical steady state. The computation was continued for about 3D/U0 in
order to calculate the statistics for the ensemble averages of turbulent
quantities over space and time. All the results discussed in the following section
are based on non-dimensional parameters normalized by the nozzle exit
velocity U0 and the nozzle diameter D.

Results and discussion
Solution of the fully developed turbulent pipe flow
Several mean flow in pipe flow properties from the present DNS and reference
DNS are listed in Table I. Uc is the center line velocity, Cf the friction
coefficient, and Reb is the Reynolds number based on the bulk velocity and
pipe diameter. From Table I it appears that the present DNS results agree with
previous DNS results.

The mean velocity profile normalized by the friction velocity is shown in
Figure 4. There is good agreement with the DNS results of Eggels (1994) and
Akselvoll and Moin (1995).

The turbulent intensities are shown in Figure 5. Minor deviations for the
streamwise component are observed between the present DNS and Akselvoll
and Moin’s DNS. In the other components, excellent agreement is observed
between the present DNS and previous DNS.

The budget of turbulent kinetic energy, normalized by the friction velocity, is
shown in Figure 6 where a negligible residual error is evident. Note that the
residual of the turbulent kinetic energy equation has to be zero. 

Case Reb Uc Ub Uc/Ub Cf

Present 5,310 19.39 14.75 1.31 9.19 × 10–3

Eggels et al.
(1994) 5,303 19.31 14.73 1.31 9.22 × 10–3

Akselvoll and 
Moin (1995) 5,292 19.32 14.70 1.31 9.25 × 10–3 Table I.
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Solution of the impinging jet
Figure 7 presents the comparison between the DNS results and Nishino’s
experimental data (Nishino et al., 1996) for the mean axial velocity profiles. The
comparison is made at five representative locations; r/D = 0.25 at the inner
nozzle,  r/D = 0.5 at the nozzle edge, and three wall jet regions, r/D = 1.0, 1.95,
2.41. Excellent agreement between computational and experimental results is
obtained in the wall jet region. At other stations, the present results are
relatively larger than the experimental results. This is because the inlet
boundary condition is different from the experimental condition, since a bell-
mouth shape contraction was used as the inlet nozzle in the experiment. The

Figure 4.
Comparison of mean
axial velocity in
turbulent pipe flow
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mean radial velocity profiles Ur/U0 are shown in Figure 8. The peak velocity at
the boundary layer is larger than that of the experiment, although the entire
profiles at each radial location are in fairly good agreement with the
experimental data. 

Reynolds shear stress –ur'
__

uz'
__ 

distributions along the z-direction are shown in
Figure 9. In the vicinity of the wall, negative values can be seen. Although the
experimental data show more complicated distributions in the same region, the
locations of negative –ur'

__
uz'
__ 

in both results are almost the same. The r.m.s.
profiles of axial and radial velocity fluctuations are compared with the
experimental data at five locations in Figures 10 and 11. In Figures 10 and 11,
the values of (uz'

_ _
uz'
__

) and (ur'
__

ur'
__

)1/2 in the jet impingement region are relatively
smaller than the experimental data because the present sampling time for
statistical treatment is very small compared with the experiment. However, it is

Figure 6.
The budget of turbulent

kinetic energy in
turbulent pipe flow
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Figure 8.
Comparison of mean
radial velocity profiles:
lines, present; symbols,
experimental data by
Nishino et al. (1996)
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found that these profiles in the downstream region are in good agreement with
the experimental data. Reynolds stress (

_____
uθ' uθ')

1/2 profiles along the z-direction
are shown in Figure 12. The profiles are similar to that of (ur'

__
ur'
__

)1/2. Nishino et al.
(1996) also observed the same behavior.

The budget of turbulent kinetic energy can be obtained by

(13)

where: production is

dissipation is

Figure 11.
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pressure diffusion:

convection:

turbulent diffusion:

viscous diffusion:

The budgets of turbulent kinetic energy compared with Nishino’s experimental
data at r/D = 0.5 are shown in Figures 13 and 14. Some fluctuations of the
curves obtained by the DNS are observed in all budget terms, but are most
pronounced in the turbulent diffusion term. Although the sampling times are
insufficient, the overall profiles of all terms are not very different from the

Figure 13.
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experimental data. The negative production in the present calculation is also
observed in Figure 13. Figure 15 shows the three-dimensional contour surface
of the low pressure region; p'<–0.02. The generation of vortex-rings below the
nozzle edge and the vortex breaking about half way between the nozzle and the
wall can be observed. In the impingement region, the vortex-ring column
disappears and another big torus-shaped low pressure region forms in the
downstream region. From the numerical visualization, it is found that the wall-
layer streaks are elongated in the radial direction in the jet impingement region.
The vortex generation and breaking processes and the generation and

Figure 14.
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elongation processes of the wall-streaks will be considered as the main
mechanism of turbulence transition in this flow. Further investigation will be
necessary to understand the entire turbulence transition processes for this kind
of complex flow.

Summary
DNS on a turbulent impinging round jet was carried out for a Reynolds number
of 10,000. The present results in the downstream region are in fairly good
agreement with Nishino’s experimental data. From the numerical visualization
results in the jet impingement region, it is found that the wall-layer streaks are
elongated in the radial direction.
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